
Perl Programming

A Crash Course

Dr Russ Ross

Dixie State College—Computer and Information Technologies

September 16, 2010

Dr Russ Ross (Dixie State College) Perl September 16, 2010 1 / 24

An example

UID to username

This script finds the username for a given UID:

#!/usr/bin/perl -w

use strict;

sub getuname {

@_ != 2 and die "Wrong number of arguments";

my $uid = shift;

my $fname = shift;

open FP, "<$fname" or die "Unable to open $fname: $!\n";

while (<FP >) {

my @items = split ’:’, $_;

return $items [0] if $items [2] == $uid;

}

die "Not found";

}

print getuname (1001, "/etc/passwd") . "\n";

Dr Russ Ross (Dixie State College) Perl September 16, 2010 2 / 24

Perl Data Types

Perl data types

Perl types are distinguished by their shape. We will consider the
following principal data types:

I $Scalars (numbers, strings, references)
I @Arrays (lists of scalars)
I %Hashes (maps from strings to scalars)
I $, @, %, get it?
I File handles

There are others, but these are the main types we will focus on.

Dr Russ Ross (Dixie State College) Perl September 16, 2010 3 / 24

Perl Data Types Scalars

Scalars

A scalar is a single value. Scalars are named with a dollar sign ($).
Note that the dollar sign names a value, not a variable. Some
examples:

I 0, 1.5, 6.04e23, 1_000_000
I $x, $myarray[5]
I ’Quoted string’, ”Double quoted string”

Basic operators are the same as C/C++/Java:

I $a = 1 + 2

I $a = 5 % 2

I ++$a, $a++
I $a = 5 + 3 * 8

Dr Russ Ross (Dixie State College) Perl September 16, 2010 4 / 24

Perl Data Types Scalars

Strings

I Double-quoted strings are interpolated:

my $name = ’Russ’;

my $shoesize = 12;

print "$name has an IQ of $shoesize\n";

I Single-quoted strings are not interpolated.
I Strings are automatically converted to numbers and vice versa

(Perl considers them to be the same thing).
I + adds two numbers, . concatenates two strings:

print ’7’ + ’4’;

print ’Hello’ + ’ world ’;

print ’7’ . ’4’;

print ’Hello’ . ’ world ’;

Dr Russ Ross (Dixie State College) Perl September 16, 2010 5 / 24

Perl Data Types Arrays

Arrays

Arrays are named with an @ sign:

my @rodents;

Array literals:

@rodents = (’mouse’, ’rat’, ’squirrel’, ’gerbil’);

Arrays are always flat:

@rodents = ((’mouse’, ’rat’), ((’squirrel’), ’gerbil’));

Arrays are copied by default:

@a = @b; pop @a; #@b is unaffected

Dr Russ Ross (Dixie State College) Perl September 16, 2010 6 / 24

Perl Data Types Arrays

Array operations

I push @rodents, ’mole’;

I print "I know about @rodents\n";

I my $first = shift @rodents;

I unshift @rodents, ’chipmunk’;

I pop @rodents;

I print "I like $rodents[1]s best\n";

I print "The last kind is $rodents[-1]\n";

I print "@rodents";

I print "@rodents[0..2]";

I print "@rodents[0,2]";

Dr Russ Ross (Dixie State College) Perl September 16, 2010 7 / 24

Perl Data Types Arrays

Context

Perl expressions are always evaluated in some context. If an array
value is expected, an expression may give a different result than the
same expression if a scalar is expected:

print @rodents;

print 0 + @rodents;

Dr Russ Ross (Dixie State College) Perl September 16, 2010 8 / 24

Perl Data Types Arrays

Greenfly

Greenfly can reproduce asexually. After one week of life a lone female
can produce either offspring a day. Starting at the beginning of day 1
with a single mature female, how many greefly could there be by the
end of day 28? It may be assumed that:

I There are no deaths
I All offspring are females

Note that at the end of:

I day 1 there will be 9 greenfly (original + 8 offspring)
I day 7 there will be 57 greenfly (original + 8×7 offspring)
I day 8 there will be 129 greenfly (original + 8×8 offspring + 64

offspring from the daughters produced on day 1).

Dr Russ Ross (Dixie State College) Perl September 16, 2010 9 / 24

Perl Data Types Arrays

Greenfly problem

This can be solved with:

#!/usr/bin/perl -w

use strict;

my @flies = (0, 0, 0, 0, 0, 0, 1);

foreach (1..28) {

my $mature = pop @flies;

unshift @flies , $mature * 8;

$flies [-1] += $mature;

}

my $total = 0;

$total += $_ foreach @flies;

print "total after 28 days is $total\n"

Dr Russ Ross (Dixie State College) Perl September 16, 2010 10 / 24

Perl Data Types Hashes

Hashes

Associate arrays, or hashes, map keys to values, and are a basic
datatype in Perl:

my %grades = (’Kimberly ’ => ’B’, ’Kay’ => ’C+’, ’Jonathan ’ => ’D’);

$grades{’Kimberly ’} .= ’-’;

$grades{’Kay’} = substr($grades{’Kay’}, 0, 1);

Dr Russ Ross (Dixie State College) Perl September 16, 2010 11 / 24

Control Flow Statements

Conditionals

If statements:

if ($x > 7) {

print "$x\n";

} elsif ($x < 3) {

print "Boo\n";

} else {

print "Yeah";

}

unless ($x > 5) {

la la la

}

The braces are always required, except when using the postfix form:

$x++ if $s == ’inc’;

print ’I eat steak’ unless $type == ’vegan’;

Dr Russ Ross (Dixie State College) Perl September 16, 2010 12 / 24

Control Flow Statements

Loops

A variety of loop types:

for (my $i = 0; $i < 10; $i++) { print "$i\n"; }

foreach my $i (1, 2, 3, 4) { print "$i\n"; }

for (1..10) { print; }

while ($x < 7) { $x++; }

until ($x > 8) { $x++; }

print $i++ while $i < 10;

loop over an array

foreach my $elt (@rodents) { print "$elt\n"; }

loop over values in a hash

while (($k, $v) = each %myhash) {

print "$k = $v\n";

}

Dr Russ Ross (Dixie State College) Perl September 16, 2010 13 / 24

Subroutines

Subroutines

Functions in Perl are called subroutines:

sub bigger {

my ($a , $b) = @_;

return $a > $b ? $a : $b;

or $_[0] > $_[1] ? $_[0] : $_[1];

}

Parameters are not declared. They all arrive in an array called @_.

The last value computed in a subroutine is automatically returned if
return is omitted.

Parentheses are optional when calling a subroutine, unless it causes
ambiguity:

($a , $b) = (5, 2);

my $x = bigger $a, $b;

Dr Russ Ross (Dixie State College) Perl September 16, 2010 14 / 24

Implicit variables

Implicit variables

In many places, you can leave out a parameter and Perl will supply a
default value for you. Usually this is $_ for scalars and @_ for arrays:

open FP, "<input.txt" or die;

while (<FP >) {

print;

}

sub rev {

my @out;

unshift @out , $_ foreach @_;

@out

}

Dr Russ Ross (Dixie State College) Perl September 16, 2010 15 / 24

Regular Expression

Regular expressions

Regular expressions are integrated into Perl. They are a variation of
POSIX regular expressions that are now used by most other
languages as well:

while (<>) {

if (m/^ DTITLE= *(.*?) *\/ *(.*?) *$/) {

($artist , $album) = ($1 , $2);

} elsif (m/^DYEAR= *(.*?) *$/) {

$year = $1;

} elsif (m/^ DGENRE= *(.*?) *$/) {

$genre = $1;

} elsif(m/^ TTITLE (\d+)= *(.*?) *$/) {

$tracks[$1 + 1] = $2;

}

}

Dr Russ Ross (Dixie State College) Perl September 16, 2010 16 / 24

More Information

Books

I Learning Perl is a good way to learn Perl if you already know how
to program and are comfortable in Linux.

I Programming Perl is the standard text on the language, and is
quite readable as well (I learned it by reading this book).

I Perl Cookbook has snippets of code to do many of the most
common tasks. Reading those examples is a good way to get a
feel for how the language should actually be used.

Dr Russ Ross (Dixie State College) Perl September 16, 2010 17 / 24

Examples

Above average

sub mean {

my $sum = 0;

$sum += $_ foreach @_;

return $sum / @_;

}

sub above_average {

my $mean = mean @_;

my @above = ();

$_ > $mean and push @above , $_ foreach @_;

@above;

}

my @fred = &above_average (1..10);

print "\@fred is @fred\n";

print "(should be 6 7 8 9 10)\n";

my @barney = &above_average (100, 1..10);

print "\@barney is @barney\n";

print "(should be just 100)\n";

Dr Russ Ross (Dixie State College) Perl September 16, 2010 18 / 24

Examples

Calculator
for (;;) {

print "cmnd: ";

chomp(my $op = <STDIN >);

last if $op eq ’quit’;

if ($op ne ’+’ && $op ne ’-’ && $op ne ’*’ && $op ne ’/’) {

print "Unknown command: $op\n";

print "Valid commands: ’+’, ’-’, ’*’, ’/’, or ’quit ’\n\n";

next;

}

print "arg1: ";

chomp(my $arg1 = <STDIN >);

print "arg2: ";

chomp(my $arg2 = <STDIN >);

my $result;

$op eq ’+’ and $result = $arg1 + $arg2;

$op eq ’-’ and $result = $arg1 - $arg2;

$op eq ’*’ and $result = $arg1 * $arg2;

$op eq ’/’ and $result = $arg1 / $arg2;

print "$arg1 $op $arg2 = $result\n\n";

}

Dr Russ Ross (Dixie State College) Perl September 16, 2010 19 / 24

Examples

Sort middle

This code sorts the middle letters in each word of input.

sub sort_letters {

my @letters = split //, shift;

join ’’, sort @letters;

}

while (<>) {

s/([A-Za-z])([A-Za-z]+)([A-Za-z])/$1.sort_letters($2).$3/ge;

print;

}

Dr Russ Ross (Dixie State College) Perl September 16, 2010 20 / 24

Examples

Find PID

Find the PID of a process by name:

die "Usage: $0 <name >\n" unless @ARGV == 1;

my $target = shift @ARGV;

my $list = ‘ps ax ‘;

my @lines = split /\n/, $list;

#print scalar(@lines);

foreach my $line (@lines) {

$line =~ s/^\s+//;

my @fields = split /\s+/, $line;

print $fields [0] . "\n" if $fields [4] eq $target;

}

Dr Russ Ross (Dixie State College) Perl September 16, 2010 21 / 24

Examples

Matrix transposition
use Data:: Dumper;

sub readMatrix {

my $m = [];

while (<STDIN >) {

chomp;

last if m/^\s*$/;

m/^\[*(.*?) *\]$/ or die;

push @$m , [split / +/, $1];

}

$m; }

sub printMatrix {

my $m = shift;

print "[" . (join ’ ’, @$_) . "]\n" foreach @$m; }

sub transposeMatrix {

my $m = shift;

my $result = [];

for (my $y = 0; $y < @$m; $y++) {

my $row = $m ->[$y];

for (my $x = 0; $x < @$row; $x++) {

$result ->[$x]->[$y] = $m ->[$y]->[$x];

}}

$result; }

Dr Russ Ross (Dixie State College) Perl September 16, 2010 22 / 24

Examples

Word count

#!/usr/bin/perl -w

use strict;

my $count = 0;

while (<>) {

my @words = split /\s+/, $_;

$count += @words;

}

print "$count\n";

Dr Russ Ross (Dixie State College) Perl September 16, 2010 23 / 24

Examples

Prime number sieve

my $target = <STDIN >;

chomp $target;

my @sieve = ();

my $limit = int(sqrt($target));

for (my $i = 2; $i < $limit; $i++) {

unless (defined($sieve[$i])) {

for (my $j = $i * 2; $j <= $target; $j += $i) {

$sieve[$j] = 1;

}

}

}

for (my $i = 2; $i <= $target; $i++) {

print "$i is prime\n" unless defined $sieve[$i];

}

Dr Russ Ross (Dixie State College) Perl September 16, 2010 24 / 24

	An example
	Perl Data Types
	Scalars
	Arrays
	Hashes

	Control Flow Statements
	Subroutines
	Implicit variables
	Regular Expression
	More Information
	Examples

